Microsoft Entra ID Sign-In Brute Force Activity
editMicrosoft Entra ID Sign-In Brute Force Activity
editIdentifies potential brute-force attacks targeting user accounts by analyzing failed sign-in patterns in Microsoft Entra ID Sign-In Logs. This detection focuses on a high volume of failed interactive or non-interactive authentication attempts within a short time window, often indicative of password spraying, credential stuffing, or password guessing. Adversaries may use these techniques to gain unauthorized access to applications integrated with Entra ID or to compromise valid user accounts.
Rule type: esql
Rule indices: None
Severity: medium
Risk score: 47
Runs every: 15m
Searches indices from: now-60m (Date Math format, see also Additional look-back time
)
Maximum alerts per execution: 100
References:
- https://www.microsoft.com/en-us/security/blog/2025/05/27/new-russia-affiliated-actor-void-blizzard-targets-critical-sectors-for-espionage/
- https://cloud.hacktricks.xyz/pentesting-cloud/azure-security/az-unauthenticated-enum-and-initial-entry/az-password-spraying
- https://learn.microsoft.com/en-us/security/operations/incident-response-playbook-password-spray
- https://learn.microsoft.com/en-us/purview/audit-log-detailed-properties
- https://securityscorecard.com/research/massive-botnet-targets-m365-with-stealthy-password-spraying-attacks/
- https://learn.microsoft.com/en-us/entra/identity-platform/reference-error-codes
- https://github.com/0xZDH/Omnispray
- https://github.com/0xZDH/o365spray
Tags:
- Domain: Cloud
- Domain: Identity
- Data Source: Azure
- Data Source: Entra ID
- Data Source: Entra ID Sign-in Logs
- Use Case: Identity and Access Audit
- Use Case: Threat Detection
- Tactic: Credential Access
- Resources: Investigation Guide
Version: 2
Rule authors:
- Elastic
Rule license: Elastic License v2
Investigation guide
editTriage and analysis
Investigating Microsoft Entra ID Sign-In Brute Force Activity
This rule detects brute-force authentication activity in Entra ID sign-in logs. It classifies failed sign-in attempts into behavior types such as password spraying, credential stuffing, or password guessing. The classification (bf_type
) helps prioritize triage and incident response.
Possible investigation steps
-
Review
bf_type
: Determines the brute-force technique being used (password_spraying
,credential_stuffing
, orpassword_guessing
). -
Examine
user_id_list
: Identify if high-value accounts (e.g., administrators, service principals, federated identities) are being targeted. -
Review
login_errors
: Repetitive error types like"Invalid Grant"
or"User Not Found"
suggest automated attacks. -
Check
ip_list
andsource_orgs
: Investigate if the activity originates from suspicious infrastructure (VPNs, hosting providers, etc.). -
Validate
unique_ips
andcountries
: Geographic diversity and IP volume may indicate distributed or botnet-based attacks. -
Compare
total_attempts
vsduration_seconds
: High rate of failures in a short time period implies automation. -
Analyze
user_agent.original
anddevice_detail_browser
: User agents likecurl
,Python
, or generic libraries may indicate scripting tools. -
Investigate
client_app_display_name
andincoming_token_type
: Detect potential abuse of legacy or unattended login mechanisms. -
Inspect
target_resource_display_name
: Understand what application or resource the attacker is trying to access. -
Pivot using
session_id
anddevice_detail_device_id
: Determine if a device is targeting multiple accounts. -
Review
conditional_access_status
: If not enforced, ensure Conditional Access policies are scoped correctly.
False positive analysis
- Legitimate automation (e.g., misconfigured scripts, sync processes) can trigger repeated failures.
- Internal red team activity or penetration tests may mimic brute-force behaviors.
- Certain service accounts or mobile clients may generate repetitive sign-in noise if not properly configured.
Response and remediation
- Notify your identity security team for further analysis.
- Investigate and lock or reset impacted accounts if compromise is suspected.
- Block offending IPs or ASNs at the firewall, proxy, or using Conditional Access.
- Confirm MFA and Conditional Access are enforced for all user types.
- Audit targeted accounts for credential reuse across services.
- Implement account lockout or throttling for failed sign-in attempts where possible.
Rule query
editFROM logs-azure.signinlogs* // Define a time window for grouping and maintain the original event timestamp | EVAL time_window = DATE_TRUNC(15 minutes, @timestamp), event_time = @timestamp // Filter relevant failed authentication events with specific error codes | WHERE event.dataset == "azure.signinlogs" AND event.category == "authentication" AND azure.signinlogs.category IN ("NonInteractiveUserSignInLogs", "SignInLogs") AND event.outcome == "failure" AND azure.signinlogs.properties.authentication_requirement == "singleFactorAuthentication" AND azure.signinlogs.properties.status.error_code IN ( 50034, // UserAccountNotFound 50126, // InvalidUsernameOrPassword 50055, // PasswordExpired 50056, // InvalidPassword 50057, // UserDisabled 50064, // CredentialValidationFailure 50076, // MFARequiredButNotPassed 50079, // MFARegistrationRequired 50105, // EntitlementGrantsNotFound 70000, // InvalidGrant 70008, // ExpiredOrRevokedRefreshToken 70043, // BadTokenDueToSignInFrequency 80002, // OnPremisePasswordValidatorRequestTimedOut 80005, // OnPremisePasswordValidatorUnpredictableWebException 50144, // InvalidPasswordExpiredOnPremPassword 50135, // PasswordChangeCompromisedPassword 50142, // PasswordChangeRequiredConditionalAccess 120000, // PasswordChangeIncorrectCurrentPassword 120002, // PasswordChangeInvalidNewPasswordWeak 120020 // PasswordChangeFailure ) AND azure.signinlogs.properties.user_principal_name IS NOT NULL AND azure.signinlogs.properties.user_principal_name != "" AND user_agent.original != "Mozilla/5.0 (compatible; MSAL 1.0) PKeyAuth/1.0" AND source.`as`.organization.name != "MICROSOFT-CORP-MSN-AS-BLOCK" // Aggregate statistics for behavioral pattern analysis | STATS authentication_requirement = VALUES(azure.signinlogs.properties.authentication_requirement), client_app_id = VALUES(azure.signinlogs.properties.app_id), client_app_display_name = VALUES(azure.signinlogs.properties.app_display_name), target_resource_id = VALUES(azure.signinlogs.properties.resource_id), target_resource_display_name = VALUES(azure.signinlogs.properties.resource_display_name), conditional_access_status = VALUES(azure.signinlogs.properties.conditional_access_status), device_detail_browser = VALUES(azure.signinlogs.properties.device_detail.browser), device_detail_device_id = VALUES(azure.signinlogs.properties.device_detail.device_id), device_detail_operating_system = VALUES(azure.signinlogs.properties.device_detail.operating_system), incoming_token_type = VALUES(azure.signinlogs.properties.incoming_token_type), risk_state = VALUES(azure.signinlogs.properties.risk_state), session_id = VALUES(azure.signinlogs.properties.session_id), user_id = VALUES(azure.signinlogs.properties.user_id), user_principal_name = VALUES(azure.signinlogs.properties.user_principal_name), result_description = VALUES(azure.signinlogs.result_description), result_signature = VALUES(azure.signinlogs.result_signature), result_type = VALUES(azure.signinlogs.result_type), unique_users = COUNT_DISTINCT(azure.signinlogs.properties.user_id), user_id_list = VALUES(azure.signinlogs.properties.user_id), login_errors = VALUES(azure.signinlogs.result_description), unique_login_errors = COUNT_DISTINCT(azure.signinlogs.result_description), error_codes = VALUES(azure.signinlogs.properties.status.error_code), unique_error_codes = COUNT_DISTINCT(azure.signinlogs.properties.status.error_code), request_types = VALUES(azure.signinlogs.properties.incoming_token_type), app_names = VALUES(azure.signinlogs.properties.app_display_name), ip_list = VALUES(source.ip), unique_ips = COUNT_DISTINCT(source.ip), source_orgs = VALUES(source.`as`.organization.name), countries = VALUES(source.geo.country_name), unique_country_count = COUNT_DISTINCT(source.geo.country_name), unique_asn_orgs = COUNT_DISTINCT(source.`as`.organization.name), first_seen = MIN(@timestamp), last_seen = MAX(@timestamp), total_attempts = COUNT() BY time_window // Determine brute force behavior type based on statistical thresholds | EVAL duration_seconds = DATE_DIFF("seconds", first_seen, last_seen), bf_type = CASE( // Many users, relatively few distinct login errors, distributed over multiple IPs (but not too many), // and happens quickly. Often bots using leaked credentials. unique_users >= 10 AND total_attempts >= 30 AND unique_login_errors <= 3 AND unique_ips >= 5 AND duration_seconds <= 600 AND unique_users > unique_ips, "credential_stuffing", // One password against many users. Single error (e.g., "InvalidPassword"), not necessarily fast. unique_users >= 15 AND unique_login_errors == 1 AND total_attempts >= 15 AND duration_seconds <= 1800, "password_spraying", // One user targeted repeatedly (same error), OR extremely noisy pattern from many IPs. (unique_users == 1 AND unique_login_errors == 1 AND total_attempts >= 30 AND duration_seconds <= 300) OR (unique_users <= 3 AND unique_ips > 30 AND total_attempts >= 100), "password_guessing", // everything else "other" ) // Only keep columns necessary for detection output/reporting | KEEP time_window, bf_type, duration_seconds, total_attempts, first_seen, last_seen, unique_users, user_id_list, login_errors, unique_login_errors, unique_error_codes, error_codes, request_types, app_names, ip_list, unique_ips, source_orgs, countries, unique_country_count, unique_asn_orgs, authentication_requirement, client_app_id, client_app_display_name, target_resource_id, target_resource_display_name, conditional_access_status, device_detail_browser, device_detail_device_id, device_detail_operating_system, incoming_token_type, risk_state, session_id, user_id, user_principal_name, result_description, result_signature, result_type // Remove anything not classified as credential attack activity | WHERE bf_type != "other"
Framework: MITRE ATT&CKTM
-
Tactic:
- Name: Credential Access
- ID: TA0006
- Reference URL: https://attack.mitre.org/tactics/TA0006/
-
Technique:
- Name: Brute Force
- ID: T1110
- Reference URL: https://attack.mitre.org/techniques/T1110/
-
Sub-technique:
- Name: Password Guessing
- ID: T1110.001
- Reference URL: https://attack.mitre.org/techniques/T1110/001/
-
Sub-technique:
- Name: Password Spraying
- ID: T1110.003
- Reference URL: https://attack.mitre.org/techniques/T1110/003/
-
Sub-technique:
- Name: Credential Stuffing
- ID: T1110.004
- Reference URL: https://attack.mitre.org/techniques/T1110/004/