Quickstart: Time series data stream basics
Stack Serverless
Use this quickstart to set up a time series data stream (TSDS), ingest a few documents, and run a basic query. These high-level steps help you see how a TSDS works, so you can decide whether it's right for your data.
A time series is a sequence of data points collected at regular time intervals. For example, you might track CPU usage or stock price over time. This quickstart uses simplified weather sensor readings to show how a TSDS helps you analyze metrics data over time.
Access to Dev Tools Console in Kibana, or another way to make Elasticsearch API requests
Cluster and index permissions:
- Cluster privilege:
manage_index_templates
- Index privileges:
create_doc
andcreate_index
- Cluster privilege:
Familiarity with time series data stream concepts and Elasticsearch index and search basics
You can follow this guide using any Elasticsearch deployment. To see all deployment options, refer to Deploy > Choosing your deployment type. To get started quickly, spin up a cluster locally in Docker.
-
Create an index template
To create a data stream, you need an index template to base it on. The template defines the data stream structure and settings. (For this quickstart, you don't need to understand template details.)
A TSDS uses dimension fields and metric fields. Dimensions are used to uniquely identify the time series and are typically based on a descriptive property like
location
. Metrics are measurements that change over time.Use an
_index_template
request to create a template with two identifying dimension fields and two metric fields for weather measurements:PUT _index_template/quickstart-tsds-template
{ "index_patterns": ["quickstart-*"], "data_stream": { }, # Indicates this is a data stream, not a regular index. "priority": 100, "template": { "settings": { "index.mode": "time_series" # The required index mode for TSDS. }, "mappings": { "properties": { "sensor_id": { "type": "keyword", "time_series_dimension": true # Defines a dimension field. }, "location": { "type": "keyword", "time_series_dimension": true # Another dimension field. }, "temperature": { "type": "half_float", "time_series_metric": "gauge" # A supported field type for metrics. }, "humidity": { "type": "half_float", "time_series_metric": "gauge" # A second measurement. }, "@timestamp": { "type": "date" } } } } }
- Indicates this is a data stream, not a regular index.
- The required index mode for TSDS.
- Defines a dimension field.
- Another dimension field.
- A supported field type for metrics.
- A second measurement.
This example defines a
@timestamp
field for illustration purposes. In most cases, you can use the default@timestamp
field (which has a default type ofdate
) instead of defining a timestamp in the mapping.You should get a response of
"acknowledged": true
that confirms the template was created. -
Create a data stream and add sample data
In this step, create a new data stream called
quickstart-weather
based on the index template defined in Step 1. You can create the data stream and add documents in a single API call.Use a
_bulk
API request to add multiple documents at once. Make sure to adjust the timestamps to within a few minutes of the current time.PUT quickstart-weather/_bulk
{ "create":{ } } { "@timestamp": "2025-09-08T21:25:00.000Z", "sensor_id": "STATION-0001", "location": "base", "temperature": 26.7, "humidity": 49.9 } { "create":{ } } { "@timestamp": "2025-09-08T21:26:00.000Z", "sensor_id": "STATION-0002", "location": "base", "temperature": 27.2, "humidity": 50.1 } { "create":{ } } { "@timestamp": "2025-09-08T21:35:00.000Z", "sensor_id": "STATION-0003", "location": "base", "temperature": 28.1, "humidity": 48.7 } { "create":{ } } { "@timestamp": "2025-09-08T21:27:00.000Z", "sensor_id": "STATION-0004", "location": "satellite", "temperature": 32.4, "humidity": 88.9 } { "create":{ } } { "@timestamp": "2025-09-08T21:36:00.000Z", "sensor_id": "STATION-0005", "location": "satellite", "temperature": 32.3, "humidity": 87.5 }
The response shows five sample weather data documents.
Example response
{ "errors": false, "took": 0, "items": [ { "create": { "_index": ".ds-quickstart-weather-2025.09.08-000001", "_id": "cFJZQJlNh-Xl8V_rAAABmSs3x-A", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 0, "_primary_term": 1, "status": 201 } }, { "create": { "_index": ".ds-quickstart-weather-2025.09.08-000001", "_id": "c-wsTT0T4CtI3hOuAAABmSs4skA", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 1, "_primary_term": 1, "status": 201 } }, { "create": { "_index": ".ds-quickstart-weather-2025.09.08-000001", "_id": "Hdee5vMpBvZymWvHAAABmStA76A", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 2, "_primary_term": 1, "status": 201 } }, { "create": { "_index": ".ds-quickstart-weather-2025.09.08-000001", "_id": "e3Z2UirUQldsjLr2AAABmSs5nKA", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 3, "_primary_term": 1, "status": 201 } }, { "create": { "_index": ".ds-quickstart-weather-2025.09.08-000001", "_id": "N3-RYtQAp6JEsLRNAAABmStB2gA", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 2, "failed": 0 }, "_seq_no": 4, "_primary_term": 1, "status": 201 } } ] }
TipIf you get an error about timestamp values, check the error response for the valid timestamp range. For more details, refer to Time series data streams > Accepted time range for adding data.
-
Run a query
Now that your data stream has some documents, you can use the
_search
endpoint to query the data. This sample aggregation shows average temperature for each location, in hourly buckets. (You don't need to understand the details of aggregations to follow this example.)POST quickstart-weather/_search
{ "size": 0, "aggs": { "by_location": { "terms": { "field": "location" # The location dimension defined in the template. }, "aggs": { "avg_temp_per_hour": { "date_histogram": { "field": "@timestamp", "fixed_interval": "1h" }, "aggs": { "avg_temp": { "avg": { "field": "temperature" # A metric field defined in the template. } } } } } } } }
- The location dimension defined in the template.
- A metric field defined in the template.
Example response
{ "took": 1, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 5, "relation": "eq" }, "max_score": null, "hits": [] }, "aggregations": { "by_location": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "base", "doc_count": 3, "avg_temp_per_hour": { "buckets": [ { "key_as_string": "2025-09-08T21:00:00.000Z", "key": 1757365200000, "doc_count": 3, "avg_temp": { "value": 27.333333333333332 } } ] } }, { "key": "satellite", "doc_count": 2, "avg_temp_per_hour": { "buckets": [ { "key_as_string": "2025-09-08T21:00:00.000Z", "key": 1757365200000, "doc_count": 2, "avg_temp": { "value": 32.359375 } } ] } } ] } } }
TipYou can also try this aggregation in a data view in Kibana.
This quickstart introduced the basics of time series data streams. To learn more, explore these topics:
For more information about the APIs used in this quickstart, review the Elasticsearch API reference documentation: